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Parathyroidectomy is the treatment of choice for primary hyperparathyroidism when the clinical criteria are met. Although bilateral 
neck exploration is traditionally the standard method for surgery, minimally invasive parathyroidectomy (MIP), or focused parathy-
roidectomy, has been widely accepted with comparable curative outcomes. For successful MIP, accurate preoperative localization of 
parathyroid lesions is essential. However, no consensus exists on the optimal approach for localization. Currently, ultrasonography 
and technetium-99m-sestamibi–single photon emission computed tomography/computed tomography are widely accepted in most 
cases. However, exact localization cannot always be achieved, especially in cases with multiglandular disease, ectopic glands, recur-
rent disease, and normocalcemic primary hyperparathyroidism. Therefore, new modalities for preoperative localization have been 
developed and evaluated. Positron emission tomography/computed tomography and parathyroid venous sampling have demonstrat-
ed improvements in sensitivity and accuracy. Both anatomical and functional information can be obtained by combining these meth-
ods. As each approach has its advantages and disadvantages, the localization study should be deliberately chosen based on each pa-
tient’s clinical profile, costs, radiation exposure, and the availability of experienced experts. In this review, we summarize various 
methods for the localization of hyperfunctioning parathyroid tissues in primary hyperparathyroidism.
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INTRODUCTION

Primary hyperparathyroidism (PHPT) is a status of normal or 
elevated parathyroid hormone (PTH) levels despite hypercalce-
mia [1]. The diagnosis is mostly confirmed by biochemical 
tests, and the clinical indications for surgery are relatively well 
established [1]. Surgical resection of the parathyroid lesion is 
indicated when serum calcium is >1 mg/dL above the upper 
limit of normal, skeletal or renal involvement is present, or the 
patient’s age is under 50 years [1]. Imaging findings of the para-

thyroid glands are not required to diagnose PHPT or to decide 
on a treatment plan. Negative imaging does not indicate that 
there is no need for surgery. However, once a patient is selected 
as a surgical candidate, imaging is necessary for performing 
minimally invasive parathyroidectomy (MIP).

Detecting hyperfunctioning parathyroid tissues is not always 
easy, and there was a dictum that the only localizing study nec-
essary is to locate an experienced parathyroid surgeon [2]. The 
conventional surgical exploration involves the surgeon explor-
ing the bilateral neck area, finding the pathologic parathyroid 
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glands, and removing them [3]. However, MIP has been widely 
accepted as most patients with PHPT have a single parathyroid 
adenoma [4,5]. MIP has a lower risk of complications, shorter 
operation time, more rapid recovery, and more favorable cos-
metic results than conventional bilateral neck exploration 
[3,5,6]. Preoperative localization is an integral part of perform-
ing MIP because surgeons need a direct approach to the patho-
logic parathyroid gland. Moreover, when the disease is persis-
tent or recurrent and reoperation is planned, positive preopera-
tive imaging is essential in planning reoperative parathyroidec-
tomy, as the abnormal glands may be in ectopic locations [7,8]. 

Over the past few decades, advanced modalities for parathy-
roid localization have been developed. However, no consensus 
exists regarding the optimal localization procedure and imaging 
protocol, and the clinical approaches vary depending on local 
expertise and institutional factors [9]. In this review article, we 
summarize the modalities for parathyroid localization and clini-
cal considerations for their employment.

ULTRASONOGRAPHY 

Ultrasonography is widely used to detect pathologic parathyroid 
tissue [8,10,11]. Normal parathyroid glands are about 4 mm in 
size and are usually not visualized on ultrasonography [11]. 
However, parathyroid adenomas are larger than normal parathy-
roid glands and appear as round or oval well-defined hypoecho-
genic structures [10,11]. Larger parathyroid adenomas may 
show cystic changes, calcifications, and lobulations [10,11]. Ul-
trasonography is useful for detecting parathyroid adenomas lo-
cated near the thyroid gland or the upper cervical portion of the 
thymus. However, ultrasonography often cannot detect parathy-
roid adenomas located behind the trachea or esophagus, or ecto-
pic lesions [10]. Ectopic parathyroid regions, ranging from the 
carotid bifurcation to the sternal notch and the carotid artery, are 
strongly recommended to be included in the ultrasound field 
[12,13]. The sensitivity of ultrasonography varies depending on 
the location of the parathyroid lesion; its overall sensitivity was 
reported to be 55% to 87%, and it is especially low in cases with 
ectopic parathyroid tissues or normocalcemic PHPT [11,14,15]. 
The positive predictive value of ultrasonography ranges from 
93% to 97%, and its specificity ranges from 40% to 98% [14].

The advantages of ultrasonography include a lack of radiation 
exposure, low cost, convenience, and the ability to screen for 
concomitant thyroid gland pathology. However, operator-de-
pendent results and its low sensitivity for ectopic parathyroid 
tissue, small parathyroid adenomas, and intra-thyroidal masses 

are limitations of this modality. False-positive results due to 
thyroid nodules and enlarged lymph nodes also should be taken 
into account [11].

Ultrasound-guided fine needle aspiration biopsy (FNAB) 
with intracystic PTH measurement might be considered in diffi-
cult cases. This is a highly specific method for parathyroid lo-
calization [16-18]. However, the risk of parathyromatosis, he-
matoma, abscess, and inflammation is a barrier to its widespread 
use [19]. In particular, parathyroid FNAB should not be per-
formed when parathyroid cancer is suspected because of the 
risk of seeding or dissemination of parathyroid tissue [8]. In ad-
dition, parathyroid FNAB cannot reliably distinguish between 
benign and malignant parathyroid lesions [8]. Given the afore-
mentioned risks, parathyroid FNAB should be limited to care-
fully selected patients [8,16].

RADIONUCLIDE IMAGING

Parathyroid scintigraphy has been employed to detect parathy-
roid lesions since 57Co-cyanocobalamine and 75Se-selenomethi-
onine were first used [20,21]. However, due to their poor image 
quality, high radiation dose, and low sensitivity, the clinical use 
of those radiotracers was abandoned with suboptimal results 
[22]. Several new radioisotopes, such as technetium-99m 
(99mTc), were proposed and drew attention because radionuclide 
imaging has the advantage of being able to identify the function-
al status of parathyroid tissue [23,24]. When combined with sin-
gle photon emission computed tomography/computed tomogra-
phy (SPECT/CT), radionuclide imaging can provide information 
on both anatomical structures and functional activity [25]. 

Positron emission tomography/CT (PET/CT) is a molecular 
imaging technique that has high sensitivity and spatial resolu-
tion [26]. Several PET tracers have been utilized in parathyroid 
imaging, including 18F-fluorodeoxyglucose (18F-FDG), 11C-me-
thionine, 11C-choline, and 18F-fluorocholine. In this section, we 
describe several radionuclide imaging methods that are current-
ly used to localize parathyroid lesions.

99mTc-sestamibi scintigraphy
In 1989, 99mTc-sestamibi scintigraphy was first described as a 
radiopharmaceutical for detecting parathyroid lesions by Coak-
ley et al. [24], and now it is a dominant isotope used for para-
thyroid scintigraphy [8]. 99mTc-sestamibi is a lipophilic cationic 
radiotracer, and its uptake depends on plasma and mitochondrial 
membrane potentials. Since adenomatous and hyperplastic 
parathyroid tissue has a large number of mitochondria in oxy-
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phil cells, 99mTc-sestamibi uptake is avid and the washout is 
slow [25]. In contrast, uptake clears more rapidly in thyroid tis-
sue than in parathyroid tissue [27]. Additionally, P-glycoprotein 
expression is associated with the transport of 99mTc-sestamibi 
across the cell membrane [28,29]. A transmembrane protein, P-
glycoprotein is an energy-dependent influx and efflux pump 
[30]. Abnormal parathyroid tissues have lower levels of P-gly-
coprotein expression than normal parathyroid glands, leading to 
greater sestamibi retention [30]. 

Sestamibi scintigraphy is widely available and relatively in-
expensive. Moreover, it has a wide imaging field which allows 
the detection of ectopic glands [22]. However, thyroid nodules, 
inflammatory thyroiditis, and lymphadenopathy might result in 
false-positive scans [31,32], and false-negative imaging results 
can occur for parathyroid adenomas weighing less than 600 to 
800 mg [33]. The sensitivity of 99mTc-sestamibi scans was re-
ported to range widely from 60% to 90% due to variations in 
study protocols and disease characteristics [34,35]. The sensitiv-
ity markedly decreased (30% to 45%) in patients with parathy-
roid hyperplasia or multiple adenomas [36].

To improve the sensitivity and obtain additional anatomical 
information, a protocol that combined 99mTc-sestamibi and 
SPECT/CT was developed, and its diagnostic value was vali-
dated [37-39]. SPECT/CT is a combination of SPECT with CT, 
and the addition of SPECT/CT to a 99mTc-sestamibi scan im-
proves sensitivity [38]. It not only provides anatomical informa-
tion but also makes it possible to differentiate parathyroid le-
sions from other sources of 99mTc-sestamibi uptake, including 
thyroid nodules and cervical lymph nodes [40]. In a meta-analy-
sis by Wong et al. [41], 99mTc-sestamibi-SPECT/CT showed an 
estimated pooled sensitivity of 86% (95% confidence interval 
[CI], 81% to 90%), which was superior to that of planar imag-
ing (70%; 95% CI, 61% to 80%) and SPECT (74%; 95% CI, 
66% to 82%). However, its sensitivity is unsatisfactory in spe-
cific situations such as multiglandular disease and ectopic ade-
noma [42,43]. According to the study by Tay et al. [44], the sen-
sitivity of 99mTc-sestamibi SPECT/CT was 78% in patients with 
single-glandular disease, whereas it was only 31% in multiglan-
dular disease. Moreover, the detection rate of 99mTc-sestamibi 
might be limited in cases with low PTH levels or normocalce-
mic PHPT [15,45]. However, it is currently used as a first-line 
imaging modality despite the several limitations mentioned 
above [46].

11C-methionine PET/CT scans
11C-methionine accumulates in abnormal tissue of the parathy-

roid gland, making it a promising radiopharmaceutical in para-
thyroid imaging [47]. Although the exact mechanism of 11C-
methionine uptake by parathyroid glands is not fully under-
stood, 11C-methionine might be involved in the synthesis of pre-
pro-PTH [48]. The clinical use of 11C-methionine-PET (MET-
PET) for parathyroid disease was first described in 1994 [49], 
and the evolution from PET to PET-CT led to more accurate 
identification and localization of parathyroid lesions [47]. MET-
PET/CT has been reported to show a comparable sensitivity to 
that of other traditional scintigraphy methods [50]. The per-pa-
tient sensitivity of MET-PET/CT and 99mTc-sestamibi-SPECT/
CT was 65% and 61%, respectively [50]. The per-lesion sensi-
tivity of MET-PET/CT and 99mTc-sestamibi-SPECT/CT was 
91% and 73% for parathyroid adenomas, without a statistically 
significant difference [50]. However, Weber et al. [51] reported 
that the sensitivity of MET-PET/CT was markedly lower in 
multiglandular disease (67%) than in detecting a single parathy-
roid adenoma (83%). The lower sensitivity for multiglandular 
disease was probably because the hyperplastic glands had less 
PTH synthesis and lower uptake of 11C-methionine than para-
thyroid adenomas [52]. Another limitation is the short half-life 
of 11C, leading to limited availability of the 11C-methionine trac-
er, its high cost, and a substantial workload for preparation 
[47,53,54].

Choline PET/CT scans
Radiolabeled choline (11C-choline or 18F-choline) has recently 
been explored and used as a promising PET tracer for detecting 
hyperfunctioning parathyroid tissue. Choline uptake is increased 
by choline kinase upregulation, and phospholipid-dependent 
choline kinase is upregulated where PTH is oversecreted. Based 
on this, radiolabeled choline PET can be used to detect parathy-
roid lesions [55,56]. 18F-choline PET has wider availability than 
11C-choline PET because it has a long half-life; thus, it does not 
need an on-site cyclotron [55]. 

Compared to MET-PET/CT, 18F-choline PET/CT was report-
ed to be more sensitive for parathyroid localization in patients 
with PHPT who had negative or inconclusive 99mTc-sestamibi-
SPECT [57]. The per-patient sensitivity of 18F-choline PET/CT 
and MET-PET/CT was 96% and 60%, respectively [57]. More-
over, 18F-choline PET/CT showed comparable or superior sensi-
tivity compared to 99mTc-sestamibi-SPECT/CT [42,58]. In a 
study by Araz et al. [58], the sensitivity of 18F-choline PET/CT 
and 99mTc-sestamibi SPECT/CT was 96% and 78%, respectively.

Other advantages of 18F-choline PET/CT include a shorter 
imaging time [42], higher spatial resolution [59], and a lower 
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radiation dose (2.8 mSv) than 99mTc-sestamibi SPECT/CT (6.8 
mSv) [60-62]. Despite its superior diagnostic performance com-
pared to conventional imaging in detecting parathyroid lesions, 
its use is still limited due to its high cost and low availability 
[61].

Other radionuclide imaging in special situations
18F-FDG is the most widely available PET tracer. It reflects 
metabolic activity by measuring the accumulation of FDG, 
which is an analog of glucose [63]. 18F-FDG PET is used to de-
tect malignancy, monitor treatment response, and predict the 
disease prognosis [63]. As with other tumors, 18F-FDG PET can 
be employed for parathyroid cancer [64,65]. A case report by 
Neumann et al. [65] showed that 18F-FDG PET could localize 
recurrent postoperative parathyroid cancer cases that 99mTc-ses-
tamibi scintigraphy and magnetic resonance imaging failed to 
detect. Several studies have investigated the role of 18F-FDG 
PET in parathyroid adenoma based on the hypothesis that FDG 
would accumulate in parathyroid adenoma in a sufficient amount 
to be visualized on PET images [66-68]. In the 1990s, the Neu-
mann et al. [66] reported that 18F-FDG PET showed superior 
sensitivity compared to 99mTc-sestamibi-SPECT, and suggested 
18F-FDG PET as a promising tool for preoperative localization 
in patients with PHPT [67]. In contrast, Melon et al. [68] con-
cluded that the sensitivity of 18F-FDG-PET is too low for preop-
erative parathyroid detection in PHPT. At present, 18F-FDG-
PET is not widely utilized in parathyroid adenoma patients. The 
possible false-positive results due to inflammation should be 
considered [69,70].

With the advent of radiolabeled peptides, somatostatin recep-
tor PET imaging, such as gallium68 (68Ga)- 1,4,7,10-tetraazacy-
clododecane-1,4,7,10-tetraacetic acid (DOTA)-D-Phe1-Tyr3–
octreotide (TOC) PET, 68Ga-DOTA-1-Nal3-octreotide PET, and 
68Ga-DOTA-D-Phe1-Tyr3-octreotate PET has emerged for de-
tecting neuroendocrine tumors [71]. In neuroendocrine tumors, 
the lesion identification rate of 68Ga-DOTA-TOC PET was 
higher than that of somatostatin receptor scintigraphy [72-74]. It 
was hypothesized that somatostatin receptor PET imaging 
might be utilized in parathyroid adenomas that express surface 
somatostatin receptors [75]. However, in a study by Froeling et 
al. [76], MEN-associated parathyroid adenomas were not de-
tected by 68Ga-DOTA-TOC PET and were identified by only 
CT. To date, somatostatin receptor PET imaging is not generally 
recommended as an ideal imaging modality for parathyroid ad-
enomas [75,76].

FOUR-DIMENSIONAL COMPUTED 
TOMOGRAPHY

Conventional CT is usually not used for parathyroid localization 
due to its inferiority to other modalities [22]. Parathyroid four-
dimensional-CT (4D-CT) was first recognized as a tool for lo-
calization in 2006 by Rodgers et al. [77]. The name of 4D-CT is 
derived from the fact that a dimension from the changes in con-
trast perfusion over time is added to three-dimensional CT [77]. 
A 4D-CT examination consists of pre-contrast, post-contrast, 
and delayed phases. In the pre-contrast image, parathyroid ade-
nomas have similar attenuation as the surrounding muscles and 
are distinguished from the iodine-rich dense thyroid gland [11]. 
In early and delayed post-contrast images, parathyroid adeno-
mas are seen as hypervascular tissue with variable enhancement 
and rapid washout. 

In previous studies, 4D-CT demonstrated better sensitivity 
than 99mTc-sestamibi scans and ultrasonography [78,79]. In a 
study by Starker et al. [78], 4D-CT showed higher sensitivity 
(85.7%) than 99mTc-sestamibi-SPECT (40.4%) and ultrasonog-
raphy (48%). It also showed superior sensitivity in reoperative 
cases [79]. In patients who had previous neck surgery, 4D-CT 
had a sensitivity of 88%, which was superior to 99mTc-sestamibi 
(54%) or ultrasonography (21%) [79]. Moreover, 4D-CT can be 
useful in patients with multiglandular disease or ectopic glands, 
although multiglandular disease remains a challenging clinical 
entity even with 4D-CT [79-81]. The main drawback of 4D-CT 
is the high radiation dose to the patient despite the use of dose 
reduction techniques [82,83]. A high false-positive rate, difficult 
interpretation, and low availability are also limitations of this 
modality [22]. Still, when ultrasonography and 99mTc-sestamibi 
scans are negative and SPECT/CT is not available, 4D-CT 
might be a beneficial method both in primary and reoperative 
cases.

PARATHYROID VENOUS SAMPLING IN 
DIFFICULT CASES

Selective parathyroid venous sampling (PVS) can be a useful 
technique when localization is inconclusive with the noninva-
sive tests described above or when the disease recurs after the 
first operation [22,84]. Venous access is usually acquired via the 
femoral vein, and blood samples are obtained from the superior 
vena cava, bilateral brachiocephalic, internal jugular, vertebral, 
thymic, and superior, middle, and inferior thyroid veins [22]. 
Although a 2-fold higher PTH level than the peripheral level 



Park HS, et al.

748  www.e-enm.org Copyright © 2022 Korean Endocrine Society

was conventionally used as a cutoff value [85,86], the optimal 
cutoff has not been fully validated. In a recent study, a 1.5-fold 
elevation of PTH was suggested as an optimal cutoff that im-
proved discriminative performance [87]. The sensitivity of PVS 
has been reported to range from 71% to 90% due to the signifi-
cant heterogeneity of enrolled patients and methodology [84,88-
90]. In cases of persistent or recurrent PHPT, PVS showed sig-
nificantly higher sensitivity than 99mTc-sestamibi-SPECT, which 
were 75% versus 30%, respectively [91]. PVS also demonstrat-
ed a high concordance rate (94.1%) with the pathological exam-
ination in cases with negative or inconsistent imaging tests [92]. 

One of the main concerns regarding PVS is its invasiveness. 
Bleeding, infection, arteriovenous fistulae, and pseudoaneu-
rysms are possible complications of PVS, although they rarely 
occur [92]. Radiation exposure during PVS ranges from 1.26 to 
5.3 mSv, which is approximately half the dose of 4D-CT (10.4 
mSv) [93,94]. Other drawbacks of PVS include its relatively 
high cost and the need for experienced radiologists [10].

Due to these limitations, the use of PVS is considered only in 
cases of reoperation or difficult localization [8,10]. However, 
considering that an accurate localization by PVS enables the use 
of MIP, PVS can be a promising tool for localization in difficult 
cases.

FUTURE DIRECTIONS: INTRAOPERATIVE 
LOCALIZATION

Parathyroid glands are small and their location varies widely. 
Therefore, distinguishing parathyroid glands from the surround-
ing tissue is often difficult during neck surgery. This task is par-
ticularly difficult when the pathogenic glands are smaller and 
multiglandular, as is often observed in normocalcemic PHPT 
[95,96]. Frozen section analysis and intraoperative PTH assays 
are traditional methods of parathyroid tissue confirmation [8]. 
However, the confirmation cannot be made before the gland is 
surgically resected. Moreover, these methods are invasive or re-
quire a longer operative time [97].

A gamma probe is a handheld gamma detector that can be uti-
lized intraoperatively after radionuclide injection [98]. It was 
once speculated that using a gamma probe after preoperative 
99mTc-sestamibi injection would not be beneficial in cases with a 
negative 99mTc-sestamibi scan [99]. However, Buicko et al. [99] 
reported that a gamma probe showed high sensitivity (90.5%) in 
identifying parathyroid adenoma in patients with negative pre-
operative 99mTc-sestamibi scans. Moreover, the gamma probe 
was effective in cases with multiple or ectopic parathyroid ade-

nomas [99-101]. Jaskowiak et al. [102] reported two reoperative 
cases with dense scars and obscured anatomy in which a gamma 
probe provided crucial aid in localization. However, the utility 
of gamma probes remains limited to an adjunctive role, and it 
cannot replace preoperative imaging or localization modalities 
[103]. 

As another intraoperative localization technique, fluorescence 
imaging has been proposed, as it is a real-time, accurate and 
rapid technique that can be used to identify parathyroid glands 
before they are resected [97,104]. It can be employed both in 
parathyroidectomy and thyroidectomy, so that postsurgical hy-
poparathyroidism can be avoided [97]. The parathyroid gland 
shows a unique pattern of autofluorescence and is displayed in 
the blue color channel when exposed to near-infrared light 
[104]. The intensity of fluorescence appears greater in parathy-
roid tissue than in other surrounding tissues such as the thyroid, 
lymph nodes, and adipose tissue [104]. Methylene blue and 
aminolevulinic acid have been studied as exogenous contrast 
materials in near-infrared autofluorescence (NIRAF) imaging 
[105,106].

The use of NIRAF imaging in the localization of hyperfunc-
tioning parathyroid tissue is still limited because the accuracy of 
NIRAF in distinguishing pathologic from normal parathyroid 
glands has not been fully validated, with inconsistent reports re-
ported in the literature [107-110]. Some studies reported that 
adenomas had higher NIRAF intensity than normal parathyroid 
glands [108], but others reported contradictory findings [107, 
109,110]. Pathologic parathyroid glands showed lower NIRAF 
intensity in other situations [107], or similar intensity compared 
to normal parathyroid tissue [109,110]. The first report on the 
NIRAF pattern of parathyroid carcinoma was recently pub-
lished as a case series, and autofluorescence was absent in three 
patients with parathyroid cancer [111]. Further studies are war-
ranted to determine whether NIRAF can be used to detect hy-
perfunctioning parathyroid tissue in patients with PHPT. 

In cases when all glands should be exposed, such as multi-
glandular disease, recurrent PHPT, multiple endocrine neopla-
sia, and secondary hyperparathyroidism, these intraoperative lo-
calization techniques may offer a benefit for detecting the para-
thyroid glands [104,112]. The routine use of NIRAF or gamma 
probes is not currently widely accepted.

CONCLUSIONS

Although several parathyroid imaging modalities have been de-
veloped, no consensus exists regarding their indications and ap-
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Table 1. Advantages and Disadvantages of Localization Modalities

Advantages Disadvantages

Ultrasonography Inexpensive
Lack of radiation exposure
Convenient
Widely available

Operator-dependent
Limited ability to assess ectopic glands

Technetium-99m-sestamibi 
scan-SPECT/CT

Assessment of ectopic glands
Acquisition of both functional and anatomical  

information

False-positive results
Low sensitivity in detecting multiglandular disease

11C-methionine-positron 
emission tomography

Assessment of ectopic glands Low availability
Short half-life (20 minutes) 
Low sensitivity in detecting multiglandular disease

Choline-positron emission 
tomography

High sensitivity
Assessment of ectopic glands

High costs
Low availability

Four-dimensional computed 
tomography

Anatomical detail
Assessment of multiglandular disease and ectopic 

glands

High radiation dose
Difficult interpretation
Low availability

Parathyroid venous sampling Assessment of ectopic glands, recurrent disease, 
and discordant or unlocalized lesions by various 
imaging studies

Invasive
High cost
An experienced radiologist is required

Near-infrared autofluores-
cence

Real-time, rapid technique Not well validated in detecting hyperfunctioning parathyroid tissue

SPECT/CT, single photon emission computed tomography/computed tomography.

Candidates for surgery with PHPT

Focused surgery

4D-CT, if available

Focused surgery

Choline-PET/CT MET-PET/CT Focused surgery Bilateral neck 
exploration

PVSOther radionuclide
imaging

Consider referring to 
high-volume center for 

further work-upa

Ultrasonography±
99mTc sestamibi scintigraphy 
(with SPECT/CT preferred)

Fig. 1. Possible preoperative localization process for primary hyperparathyroidism. Dashed lines (---): Choline-positron emission tomogra-
phy (PET) could be preferred to 11C-methionine (MET)-PET. Dot-dashed lines (─·─·): This process could be chosen with an experienced 
parathyroid surgeon. PHPT, primary hyperparathyroidism; SPECT/CT, single photon emission computed tomography/computed tomogra-
phy; PVS, parathyroid venous sampling; 4D-CT, four-dimensional computed tomography; PET/CT, positron emission tomography/com-
puted tomography. aWhen a patient is referred to a high-volume center, this process might be followed.

Definitely positive

Both positive
Only one of the 
tests available

Equivocal or
negative

Negative

Negative

NegativePositive

Positive

Positive

Both negative or 
disconcordant resultsa
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plications, leading to their less efficient usage or underutiliza-
tion in clinical practice. Thus, we reviewed the current preoper-
ative localization of parathyroid glands in patients with PHPT 
in this article. Table 1 summarizes the advantages and disadvan-
tages of each preoperative modality, and Fig. 1 depicts the pos-
sible preoperative localization process for surgical candidates 
with PHPT.

A combination of ultrasonography and 99mTc-sestamibi 
SPECT/CT is currently a favored approach to localize patho-
logic parathyroid tissue at most institutions. These modalities 
have fair sensitivity when the etiology is a single adenoma con-
taining an ample amount of mitochondria. However, PHPT may 
arise from multifocal lesions with various histology, including 
smaller adenoma, hyperplasia, or cancer. The sensitivity of con-
ventional imaging modalities is low for pathologic parathyroid 
lesions that are multiglandular or ectopic [113,114]. Parathyroid 
localization is challenging in patients with previous neck sur-
gery; recurrent, persistent, or normocalcemic hyperparathyroid-
ism; ectopic parathyroid glands; multiglandular disease; or 
parathyroid hyperplasia [45,114,115].

Choline PET and 4D-CT are imaging tests that might provide 
superior localization in certain situations. Because previous 
studies have reported superior sensitivity of choline PET com-
pared to MET-PET [57,116], choline PET could be preferred to 
MET-PET. PVS is an invasive technique, but it plays an impor-
tant role in difficult cases such as remedial cases or those with 
negative imaging tests. However, modalities such as choline 
PET, MET-PET, 4D-CT, and PVS are not widely available. 
Therefore, it might be helpful to repeat 99mTc-sestamibi SPECT/
CT at a high-volume center when the first scan is negative 
[117]. Unfortunately, appropriate localization is still clinically 
challenging in cases with multiglandular disease and parathy-
roid hyperplasia. New methods, including NIRAF, are being 
studied and are expected to enable better preoperative localiza-
tion in the future.
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