
State of the Art Review

The Evolution and Application of Artificial
Intelligence in Rhinology: A State of the
Art Review

Otolaryngology–
Head and Neck Surgery
1–10
� The Author(s) 2022

Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/01945998221110076
http://otojournal.org

Ameen Amanian, MD1 , Austin Heffernan1,
Masaru Ishii, MD, PhD2, Francis X. Creighton, MD2,
and Andrew Thamboo, MD, MHSc, FRCSC1

Abstract

Objective. To provide a comprehensive overview on the
applications of artificial intelligence (AI) in rhinology, high-
light its limitations, and propose strategies for its integration
into surgical practice.

Data Sources. Medline, Embase, CENTRAL, Ei Compendex,
IEEE, and Web of Science.

Review Methods. English studies from inception until January
2022 and those focusing on any application of AI in rhinol-
ogy were included. Study selection was independently per-
formed by 2 authors; discrepancies were resolved by the
senior author. Studies were categorized by rhinology theme,
and data collection comprised type of AI utilized, sample
size, and outcomes, including accuracy and precision among
others.

Conclusions. An overall 5435 articles were identified. Follow-
ing abstract and title screening, 130 articles underwent full-
text review, and 59 articles were selected for analysis.
Eleven studies were from the gray literature. Articles were
stratified into image processing, segmentation, and diagnos-
tics (n = 27); rhinosinusitis classification (n = 14); treatment
and disease outcome prediction (n = 8); optimizing surgical
navigation and phase assessment (n = 3); robotic surgery
(n = 2); olfactory dysfunction (n = 2); and diagnosis of aller-
gic rhinitis (n = 3). Most AI studies were published from
2016 onward (n = 45).

Implications for Practice. This state of the art review aimed to
highlight the increasing applications of AI in rhinology. Next
steps will entail multidisciplinary collaboration to ensure
data integrity, ongoing validation of AI algorithms, and inte-
gration into clinical practice. Future research should be tai-
lored at the interplay of AI with robotics and surgical
education.
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A
rtificial intelligence (AI) has been quickly expanding

within the health care domain, as it utilizes complex

algorithms and sophisticated computation to perform

human cognitive tasks at astronomical speed.1-3 Given its

promise for transforming medicine, it has seen increasing

applications ranging from disease diagnosis to prognostica-

tion, treatment planning, and optimization of surgical effi-

ciency.3-5 Due to its rapid and ongoing development, it is vital

for a clinician to be aware of recent advances and consider its

application in surgical practice.

Machine learning (ML) and deep learning (DL) are subsets

of AI, which have recently become more commonplace due to

the increased availability of computational power (Supple-

mental Table S1, available online).1 Additionally, the pres-

ence of big data has given ML the capability to make clinical

predictions by identifying patterns within data, typically not

identifiable by humans.1 Furthermore, such algorithms utilize

techniques that identify nonlinear relationships among data

variables and in various settings, and they have demonstrated

superior performance when compared with traditional statis-

tics.1 DL employs computations in multiple layers with meth-

odologies that perform automated image segmentation or

delineate phases within a surgical operation.6 Within otolaryngol-

ogy, DL’s applications have ranged from image segmentation for

diagnosis of maxillary sinusitis to differentiation of inverted papil-

loma (IP) from IP with malignant transformation.7,8

Due to the popularity of AI and its novel research out-

comes, previous publications have introduced AI and its

applications within otolaryngology.9-11 Rhinology is a sub-

specialty that has seen a myriad of technological advances,
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such as image-guided surgical navigation.12 Therefore, it is

no surprise that there has been an increasing number of AI

research within rhinology, given its promise to augment surgi-

cal practice and enhance patient-centered care.13

Although integration of technological advances such as

ML, DL, and computer vision into current rhinologic practice

is vital, it is still in its infancy, and the otolaryngologist must

understand its fundamentals and potential surgical applica-

tion. This state of the art review aims to review the current lit-

erature related to applications of AI in rhinology, discuss

existing limitations, highlight areas of promise, identify gaps

for future research, and provide otolaryngologists with an

overview of the applications of AI in rhinology.

Methods

A preliminary search on AI in rhinology was done, which

yielded a small number of articles. Therefore, a scoping review

was conducted to capture a wider breadth of articles. The review

protocol was published on the Open Science Framework

(doi:10.17605/OSF.IO/5K2GB). The reporting of this scoping

review was conducted in accordance with the PRISMA-ScR

statement (Preferred Reporting Items for Systematic Reviews

and Meta-analyses Extension for Scoping Reviews).14 Risk of

bias was not assessed in this review; however, the quality of lit-

erature was assessed via levels of evidence defined by the

Oxford Centre for Evidence-Based Medicine.15

Data Sources and Search Strategy

To identify relevant articles, a search was performed with the

following databases from the date of inception until January

2022: MEDLINE, Embase, Cochrane Central Register of Con-

trolled Trials, Ei Compendex, IEEE, and Web of Science Core

Collection. The ClinicalTrials.gov registry was also screened

for related ongoing trials. Gray literature was included, specifi-

cally conference proceedings identified from database and reg-

istry searches. The search strategy was developed with the

assistance of 2 institutional medical librarians and consisted of

2 concepts: AI (ML, DL, neural network, computer vision, and

robotics) and rhinology. These concepts and their related terms

and synonyms were combined through relevant Boolean opera-

tors (Supplemental Appendix A, available online). The search

strategy was modified for syntax where required.

Study Selection

All publications obtained from the databases were exported to

a systematic review management software (Covidence; Veri-

tas Health Innovation Ltd). Duplicate studies were removed

by this software. Articles were included if they focused on AI

applications in rhinology. Exclusion criteria were as follows:

AI in histopathology, nonautonomous robotic surgery, non-

English studies, secondary literature, in vitro or animal stud-

ies, and lack of abstract or full-text access.

Search results were reviewed independently by title and

abstract by 2 authors (A.A. and A.H.) with resolution of dis-

crepancies by the senior author (A.T.). Short-listed articles

were reviewed in full for eligibility by the 2 reviewers (A.A.

and A.H.).

A final list of articles from each reviewer was compared

and combined. A final list was presented to the supervising

author for approval. Authors were not blinded to the journal,

authors, or institution.

Main Outcomes and Data Extraction

The main outcomes extracted revolved around AI perfor-

mance and included area under the curve, sensitivity, specifi-

city, accuracy, Dice similarity coefficient, and F score. The

Dice similarity coefficient is an accuracy metric used in medi-

cal image segmentation that measures degree of overlap

between 2 volumes and ranges from 0 (no overlap) to 1 (per-

fect overlap).16 F score, a measure of accuracy, attempts to

combine the precision and recall within a model.17 Overall, the

measured outcomes allowed authors to comment on the accu-

racy of AI technologies in rhinology. Reviewers extracted rele-

vant data from the articles in duplicate to reduce bias and error.

Data were extracted with a predefined template that included

study type, level of evidence, author, year, objective, AI type,

sample size, methodology, and performance outcomes. No

uncertainties arose during the data extraction process.

Synthesis of Results

Given the heterogeneity present in the studies within this

review, a meta-analysis was not performed. Furthermore, the

data were synthesized in a narrative fashion.

Results
Characteristics of Included Studies

The search strategy yielded 5435 articles after duplications

were removed. A total of 5305 articles were excluded during

title and abstract screening due to the publications not meeting

the inclusion criteria or successfully fulfilling the exclusion

criteria. This resulted in 130 articles that were sought for

retrieval and assessment for eligibility (Figure 1). Articles

were excluded due to wrong intervention (n = 14), study

design (n = 30), outcomes (n = 4), incorrect medical field (n =

12), lack of full-text access (n = 8), and non-English language

(n = 3). After exclusion of these articles, 59 were included in

this review, with 11 coming from gray literature, mainly con-

ference proceedings. These were stratified into various cate-

gories (Supplemental Tables S2-S9, available online): image

processing, segmentation, and diagnostics (n = 27); rhinosinu-

sitis classification (n = 14); treatment and disease outcome

prediction (n = 8); optimizing surgical navigation and phase

assessment (n = 3); robotic surgery (n = 2); olfactory dysfunc-

tion (n = 2); and diagnosis of allergic rhinitis (n = 3). The fre-

quency of publications increased with time, as 76% of

publications occurred from 2016 to 2021, 16% from 2010 to

2015, and 8% from 2004 to 2009 (Figure 2). This reflects the

increased relevance and popularity of AI applications within

rhinology in recent years.

Level of Evidence

The level of evidence based on the Oxford Centre for Evidence-

Based Medicine pertaining to the included studies can be refer-

enced in the tables for each category.15 As expected, there was
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significant heterogeneity in the study design, objective, and

results. Overall, the level of evidence ranged from 2 to 5.

Discussion

Review of AI

In general, AI is broadly separated into ML and natural lan-

guage processing.9 The subsets of AI are briefly introduced to

serve as a primer prior to summarizing the results of this

review (Supplemental Table S1, available online). However,

more in-depth information on the components of AI can be

found in a review article written by Bur et al.9 Within ML,

subsets can be divided into supervised learning and unsuper-

vised learning.3 ML models are typically developed by split-

ting a data set into a training and testing set.18 In supervised

learning, each point within a data set has an associated label,

and the model is then validated via assessment of the testing

set.18 Within otolaryngology, supervised learning has been

used for classification of disease, including diagnosis of peri-

tonsillar abscess,19 prediction of hearing outcome following

sudden sensorineural hearing loss,20 and detection of orophar-

yngeal carcinoma,21 among others. Unsupervised learning,

however, aims to identify patterns from unlabeled data.22 For

example, clustering, a form of unsupervised learning, assesses

an unlabeled data set to identify clusters to which a patient

population may belong.22 This can especially be useful when

there are subtle differences present within the study popula-

tion typically difficult to directly discern.22 Finally, DL has

recently seen an uprise in use due to the advent of computa-

tional power and availability of large data sets.23 DL algo-

rithms can be used for classifying an image for diagnostics

(eg, tumor vs no tumor) or segmentation (delineating a region

of interest within an image such as a tumor).23 In otolaryngol-

ogy, DL has shown an ability to predict extranodal extension

with high accuracy24 and detect thyroid nodules on ultrasound

images.25 The advantage of DL is the ability to automate

Figure 1. PRISMA flowchart of study identification.

Figure 2. Trend of publications focusing on the application of artifi-
cial intelligence in rhinology.
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image segmentation and classification and avoid the manual

labor of image labeling; however, training of such algorithms

requires a large data set, manual work up-front, and advanced

computational throughput.2

Several themes were identified in this state of the art

review. The studies have therefore been synthesized into cate-

gories in which otolaryngologists come across in their daily

clinical practice (Supplemental Tables S2-S9, available

online).

Image Processing, Segmentation, and Diagnostics

Our review identified 27 studies that were in the realm of

image segmentation and classification (Supplemental Tables

S2-S4, available online). Within the realm of computer

vision, DL has demonstrated an ability to differentiate neo-

plasms such as IP from IP with malignant transformation,7

segment nasopharyngeal carcinoma,26 and classify IP vs nasal

polyps on preoperative computed tomography (CT) scans.27

Li et al developed a nasopharyngeal malignancy detection

model from endoscopic images using a fully convolutional

network.28 The detection model was able to perform tumor

detection in a much shorter time as compared with manual

segmentation and outperform experts.28 Therefore, in surgical

oncology, DL can provide clinicians with further information

in the preoperative setting for diagnosis29,30 and the post-

operative setting for monitoring of recurrence.31 With

ongoing advancements in AI, it remains to be seen whether

the pre- and postoperative oncologic care that patients

undergo will evolve with time.

Prior to sinonasal surgery, the team performs a thorough

evaluation of patient imaging to identify anatomic variations,

assess extent of sinonasal disease, and devise a surgical plan

for addressing the sinonasal disease.32 With the goal of reduc-

ing intraoperative complications, DL can serve as a tool in

classification of anatomic variation, disease identification,

and surgical planning.23 For example, convolutional neural

networks have been used in detecting osteomeatal complex

occlusion for 2-dimensional coronal CT images,33 predicting

the location of the anterior ethmoid artery as within the

mesentery or skull base,34 and identifying a concha bullosa at

the level of the osteomeatal complex.35 However, such

cohorts have included only 2-dimensional images, which

makes the transferability difficult given that 3-dimensional

scans are used within the clinical setting.33 Nevertheless, DL

tools demonstrate immense potential for enhancing preopera-

tive evaluation and thereby reducing the risk of surgical

complications.

DL algorithms have been used to diagnose sinusitis36-38 or

quantify sinus volumes39-42 on radiographic imaging. In fact,

algorithms have shown superior accuracy in the diagnosis of

maxillary sinusitis when compared with the performance of

radiologists41 or dental residents.43 In addition, studies have

extended their scope to diagnose sinusitis in other sinuses (eg,

frontal or ethmoid) with acceptable results.44,45 As obtaining

a large data set is not always feasible, one group was able to

demonstrate high performance when diagnosing maxillary

sinusitis within a smaller data set using a transfer learning

approach.46 Additionally, DL algorithms can be used for grad-

ing disease severity47 to determine surgical candidacy or to

detect anatomic structures within the nasal cavity17,48-50 for

surgical planning and medical education. Overall, this shows

the promise of AI solutions in providing diagnostic and teach-

ing support to clinicians and trainees.

Classification of Rhinosinusitis

The continued advancement in science has prioritized perso-

nalized medicine, which entails clustering patients into cer-

tain groups to streamline and determine the optimal treatment

modality.51 This is certainly evident in the evolution of

chronic rhinosinusitis (CRS) diagnosis.52 Recently, CRS sub-

sets have migrated from the traditional CRS with and without

polyps to the modern clustering of cases according to ana-

tomic location and endotypes.52 The observational nature that

leads to disease clustering is the hallmark of unsupervised

learning: a process that aims to identify patterns through

observation of data as opposed to being provided a label for

each data point.53 Its utility has been demonstrated for cases

such as predictions of patient phenotype or health status.3,22,54

This review highlights several studies of unsupervised

learning to determine patient clusters within CRS (Supple-

mental Table S5, available online).55-59 Parsel et al used 22

variables, such as demographics, quality of life domains (eg,

SNOT-22), comorbidity scores, and disease diagnosis, to

place patients in 7 distinct clusters.55 Although most diag-

noses were correlated with 1 cluster, some (eg, CRS without

nasal polyposis) was associated with multiple patient clusters

possibly due to differences in disease endotypes.55 Divekar

et al studied the use of the preoperative SNOT-22 survey for

clustering CRS cases.56 Interestingly, the last 2 clusters were

associated with a lack of aspirin hypersensitivity, while the

last cluster had minimal symptomatic improvement following

surgery.56

Unsupervised learning has shown to successfully cluster

patients with allergic rhinitis,60 CRS with and without nasal

polyposis,58,61 and olfactory dysfunction.62 Other forms of

ML have been implemented to predict eosinophilic CRS57 or

distinguish controls from patients with bacterial sinusitis by

using a collection of exhaled gas from the nasal airway.63

Random forest models found IL-5 and IL-13 cytokines to be

most predictive of olfactory dysfunction in patients with

CRS who were undergoing surgery.62 Nevertheless, studies

that have aimed to classify and differentiate among forms of

sinusitis64-69 may have immense potential to improve surgi-

cal care.

Treatment and Disease Outcome Prediction

With the advent of electronic medical records and curation of

medical databases, supervised ML algorithms have been

increasingly applied within health care settings for providing

disease predictions.70 In the setting of CRS, factors such as

preoperative SNOT-22 and disease phenotype have been used

for predicting postoperative outcomes71,72 (Supplemental

Table S6, available online). Chowdhury et al used a random

forest algorithm demonstrating preoperative SNOT-22 and
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several cytokines, including IL-5 and TNF-a, to be important

predictors of postoperative SNOT-22 scores.73 As our under-

standing of CRS has evolved, its multifactorial nature has

become evident.52 Therefore, ML has a role to play in this

realm given its ability to parse complex interrelationships

among clinical variables.74

Using known clinical variables to provide predictions is an

avenue to be explored with ML. ML algorithms have been

trained and shown potential in distinguishing treatment

responders vs nonresponders in acute rhinosinusitis,75 differ-

entiating postoperative quality of life following identification

of patient clusters,76 and predicting treatment outcomes in dif-

ferent patient cohorts.77-79 Kim et al found that with Lund-

Mackay score and age, the number of subepithelial human

neutrophil elastase was predictive of surgical outcomes in

patients who had CRS with nasal polyps.80 ML models can

also identify the importance of each variable within the pre-

diction model and enhance its clinical interpretability.81

With health care’s mission toward personalized medicine,

ML algorithms identifying patients at risk of treatment failure

can be used to strive for a preventative care model.82 Fujima

et al studied the use of quantitative magnetic resonance ima-

ging variables in identifying local control vs failure in patients

diagnosed with sinonasal squamous cell carcinoma and

achieved high sensitivity and specificity.83 Moreover, a

neural network was superior in predicting risk of nasopharyn-

geal carcinoma recurrence as compared with traditional statis-

tical methods such as logistic regression.84 As ML predictive

tools integrate into clinical practice, they can be used for dis-

ease prevention and prediction of recurrence.

Optimizing Surgical Navigation and Surgical
Phase Assessment

Image-guided surgery was a major milestone in the evolution

of rhinology. It allowed for improved dissection and surgical

navigation while reducing risk of injury to nearby critical

structures.85 There has been ongoing investment of research

in achieving submillimeter accuracy given the current regis-

tration accuracy of 2 mm.86 As a result, computer vision

methods have been explored to improve traditional registra-

tion methods.87,88 Three studies were highlighted in this sub-

category (Supplemental Table S7, available online). Reiter

et al developed a learning-based video CT registration algo-

rithm providing 3-dimensional reconstructions of the sinona-

sal cavity during endoscopy.87 This work was improved with

implementation of a self-supervised convolutional neural net-

work method to register intraoperative videos with CT scans

achieving submillimeter accuracy.88 Finally, surgical phase

assessment has been recently explored to help with predicting

surgical steps, avoiding complications, and providing feed-

back to surgeons.6 Bieck et al implemented a natural language

processing technique predicting future surgical steps from the

current endoscope location.89 Further studies in this realm

may focus on providing surgeons with the optimal surgical

pathway and even predicting the ideal instrumentation

depending on the anatomic region that is being operated on.

Robotic Surgery

Robotic surgery has made significant advances in other

domains of otolaryngology, such as management of orophar-

yngeal tumors, while attaining reduction in complications and

postoperative morbidity.90 Due to the bony barriers and small

nasal aperture, its current application in rhinology has been

limited.90 We included studies within robotics if they had a

component of full or semiautomation relevant to the task

(Supplemental Table S8, available online). Steinhart et al con-

structed a robot that was able to successfully follow a path

and perform automated resection of the anterior wall of the

sphenoid sinus.91 To provide surgeons the ability to operate

with 2 hands, Dai et al designed an automated endoscope

holder utilizing a tracking algorithm.92 With the development

of flexible and miniature instruments, the use of complex ML

algorithms, and the integration of image-guidance systems,

the next evolution in rhinology may be with the advent of

robotic sinonasal surgery with various automation features.90

Olfactory Dysfunction

ML algorithms were utilized among several studies to deter-

mine associations between sinonasal inflammation and olfac-

tory dysfunction62 (Supplemental Table S9, available online).

Morse et al studied a CRS group, identifying 5 patient sub-

groups in which they characterized inflammatory patterns and

studied their association with olfactory dysfunction.62 Within

the patient clusters, there were statistically significant differ-

ences in Smell Identification Test scores.62 Thereafter,

applied ML models found IL-5 and IL-13 cytokines to be

most predictive of olfactory dysfunction in patients with CRS

who were undergoing surgery.62 Similarly, unsupervised

analysis has been studied to classify specific clusters within

viral rhinitis cases based on olfactory function scoring sys-

tems.93 Clustering techniques are beneficial as specific patient

clusters can be followed in a prospective setting to study

whether other factors may contribute to olfactory dysfunction.

This is especially relevant with the COVID-19 pandemic, as

smell and taste loss has served as a predictor of COVID-19

infections.94 As long-term data continue to be curated, ML

may have a role in identifying patients at risk of long-term

olfactory dysfunction,95 establishing routine follow-up, and

offering intervention should olfactory dysfunction develop.

Diagnosis of Allergic Rhinitis

Although allergic rhinitis is one of the most common allergic

presentations, patients require an individualized treatment

approach.96 However, given the various allergens and other

potential etiologies, the timely diagnosis and treatment of this

common condition may be a challenge.96 Therefore, clinical

decision support tools aimed to aid clinicians with this diag-

nosis may be of benefit. For example, Jabez Christopher et al

compared various supervised learning approaches and devel-

oped a tool for the diagnosis of allergic rhinitis via results of

intradermal skin tests.97 Interestingly, the tool had a diagnos-

tic accuracy of 88% vs 58.2% when compared with junior

clinicians.97
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Given the increasing incidence of allergic rhinitis, espe-

cially in children, AI can identify risk factors to help with dis-

ease prevention.98 Using a random forest approach, Huang

et al found prenatal air quality to be an important predictor of

developing childhood allergic rhinitis.98 Unsupervised tech-

niques can also be used to identify patients who may develop

severe forms of allergic rhinitis.60 Therefore, AI can identify

risk factors for developing allergic rhinitis, and with public

health measures, we can move toward a preventive medical

approach for rhinologic conditions (Supplemental Table S9,

available online).

Conclusions and Implications for Practice

AI is quickly gaining traction and becoming a popular area of

research within otolaryngology.9,99 Studies to date have

mainly focused on rhinosinusitis classification and image pro-

cessing and segmentation. This has been partly due to the

enhanced computational power and ability to train and test on

complex data sets.1,2,23 Future areas of research will certainly

be extended into robotic surgery within rhinology, especially

with the goal of reducing surgical morbidity, lowering a sur-

geon’s cognitive load, and enhancing surgical dissection and

patient outcomes. Additionally, DL has a role in identifying

phases within a surgical procedure, providing performance

metrics, and serving as a tool for trainee education.6,89

AI studies within rhinology have shown promise to aug-

ment clinical practice by aiding clinical diagnosis and allow-

ing clinicians to focus on delivering empathetic care to

patients. Supervised learning may be incorporated into the

clinical setting to help clinicians infer a provisional diagno-

sis.55,100 As we move toward personalized medicine, cluster-

ing patients into disease endotypes or classifying disease from

large data sets or various imaging modalities in an efficient

manner is of utmost importance. However, as consideration is

given to the integration of AI algorithms into the clinical

domain, we must confirm data integrity, use large data sets to

ensure generalizability, and validate the algorithm using

external data sets.101 Therefore, multi-institutional collabora-

tions are needed given the requirements of big data while pre-

serving patient confidentiality.99 Importantly, it must be

iterated to clinicians that AI will assist them and augment

their practice instead of replacing human intelligence.102

Most publications to date have been within the research

setting, and the question remains how to incorporate ML tech-

nologies into clinical practice.103 This is especially challen-

ging with the ‘‘black box’’ component of ML101 and the lack

of regulatory frameworks for evaluating AI algorithms.103

Furthermore, ensuring that clinical judgment is not biased

from an algorithm’s suggestion is an ongoing area of discus-

sion within the AI community.99,101 Finally, it is vital to con-

firm lack of bias within the original data set for training

algorithms to ensure that the results are robust and generaliz-

able. For example, dermoscopic images with the presence of a

ruler were more likely to be deemed malignant as at baseline,

malignant images more frequently had a ruler in the image.104

Nevertheless, ML can be a tool to complement health care

practice and support clinical intuition.1

There are several limitations to the current study. First, his-

topathology studies were excluded given that otolaryngolo-

gists rarely interpret pathology and cytology slides. Second,

studies that did not focus on the applications of AI in rhinol-

ogy were excluded, which may have removed studies that had

a minor AI component. However, our literature encompassed

multiple clinical and engineering databases to be as compre-

hensive as possible for this review. Additionally, the refer-

ences of systematic reviews and relevant studies were cross-

checked for any other studies that may have fit the inclusion

criteria. Finally, we included gray literature publications to

ensure that studies in their early research phases were still

afforded consideration in this review given the infancy of the

applications of AI in rhinology.

We conducted a comprehensive state of the art review

on the application of AI in rhinology. To date, this field has

evolved with the introduction of image-guided surgery and

advanced instrumentation.85,86,90 There is no doubt that it will

continue to evolve with the continued evolution and translation

of AI. As additional AI-centered research is conducted, AI

interest groups should be established at institutional levels to

ensure data integrity, patient data confidentiality, and continued

validation of algorithms.101 Ongoing education in this area will

ensure that otolaryngologists can parse through the technical-

ities of AI research and products, understand the clinical appli-

cation of a proposed algorithm, and work toward integrating it

into their clinical practice as a clinical decision support tool.
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