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A B S T R A C T   

Objectives: Human papillomavirus- (HPV) positive oropharyngeal squamous cell carcinoma (OPSCC) differs 
biologically and clinically from HPV-negative OPSCC and has a better prognosis. This study aims to analyze the 
value of magnetic resonance imaging (MRI)-based radiomics in predicting HPV status in OPSCC and aims to 
develop a prognostic model in OPSCC including HPV status and MRI-based radiomics. 
Materials and methods: Manual delineation of 249 primary OPSCCs (91 HPV-positive and 159 HPV-negative) on 
pretreatment native T1-weighted MRIs was performed and used to extract 498 radiomic features per delineation. 
A logistic regression (LR) and random forest (RF) model were developed using univariate feature selection. 
Additionally, factor analysis was performed, and the derived factors were combined with clinical data in a 
predictive model to assess the performance on predicting HPV status. Additionally, factors were combined with 
clinical parameters in a multivariable survival regression analysis. 
Results: Both feature-based LR and RF models performed with an AUC of 0.79 in prediction of HPV status. 
Fourteen of the twenty most significant features were similar in both models, mainly concerning tumor sphe
ricity, intensity variation, compactness, and tumor diameter. The model combining clinical data and radiomic 
factors (AUC = 0.89) outperformed the radiomics-only model in predicting OPSCC HPV status. Overall survival 
prediction was most accurate using the combination of clinical parameters and radiomic factors (C-index =
0.72). 
Conclusion: Predictive models based on MR-radiomic features were able to predict HPV status with sufficient 
performance, supporting the role of MRI-based radiomics as potential imaging biomarker. Survival prediction 
improved by combining clinical features with MRI-based radiomics.   
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recovery; T1W, T1-weighted; TORS, Transoral robotic surgery. 
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Introduction 

Head and neck cancer accounts for an estimated 4.9% of worldwide 
cancer incidence, making it the seventh most common cancer type [1]. 
Within this group, the incidence of oropharyngeal squamous cell car
cinoma (OPSCC) has increased drastically by 57.3% in the United States 
from 1975 to 2014 [2], largely due to increased prevalence of human 
papillomavirus (HPV) related OPSCC. A distinction is made between 
HPV-positive and HPV-negative OPSCC because of their clinical and 
biological differences. HPV-positive OPSCC presents with smaller or 
even occult primary tumors, characterized by more well-defined 

borders, whereas HPV-negative tumors present with more advanced T- 
staging including increased invasion of adjacent structures [3]. 
Furthermore, HPV-positive OPSCC patients show better response to 
radio- and chemotherapy and have better overall survival, with 5-year 
survival rates of 80% versus 50% for HPV-negative patients [4–6]. 
Consequently, the American Joint Committee on Cancer classifies 
OPSCC into HPV-positive and HPV-negative tumors in their newest 
staging manual (eight edition) [7], hence the importance of accurate 
and reliable HPV status determination in OPSCC. The most widely 
applied HPV-detection method in OPSCC is p16 immunohistochemistry 
(IHC) [8]. However, approximately 17% of OPSCCs are p16-positive, 

Fig. 1. Flowchart of study. *The methods considered were the firefly algorithm, lasso method, principal component analysis, recursive feature elimination (RFE)- 
logistic regression, RFE-random forest, RFE-support vector machine, univariate feature selection and no selection method **Clinical variables were tumor site, T- 
stadium, N-stadium, gender, age, and smoking status. Abbreviations: T1W: T1-weighted, MRI: Magnetic resonance imaging, HPV: Human Papillomavirus., RaCat: 
Radiomics Calculator, IBSI: Imaging biomarker standardization guidelin, FMradio: Factor modeling for radiomic data. 
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though HPV polymerase chain reaction (PCR) negative [9]. This group 
has similar inferior survival-rates as p16-negative OPSCC patients, 
hence the importance of identifying this specific group [10]. It is 
therefore advised to perform subsequent HPV PCR analysis when p16 
IHC is positive [11]. 

A relatively new and promising tool in complementing HPV status 
prediction in OPSCC is radiomics-based phenotyping. Radiomics entails 
extracting an extensive number of quantitative features from medical 
imaging [12]. These features describe characteristics such as tumor 
signal intensity, shape and texture patterns [13]. Subsequently, the 
correlation of these quantitative features with clinical characteristics 
and their predictive and prognostic value can be assessed [14]. 
Exploring magnetic resonance imaging (MRI)-based radiomics of OPSCC 
might bring unidentified radiological, and thereby biological differences 
to light between HPV-positive and HPV-negative tumors. Moreover, 
radiomics might additionally reduce time-consuming and costly PCR 
analysis and provide for a non-invasive way of phenotyping OPSCC. 

Most radiomics studies on OPSCC HPV status make use of computed 
tomography (CT) imaging [15–18], presumably due to the relative ease 
of data extraction and interpretation as well as standardization across 
scanners and vendors [19]. These CT-based radiomics studies on OPSCC 
show promising results regarding OPSCC prognosis and phenotyping. 
However, in many institutions MRI is the modality of choice for imaging 
OPSCC, due to detailed soft tissue contrast and ability to identify 
physical properties of tumors by application of separate sequence 
acquisition protocols [20]. Currently, only few studies have shown the 
use of MRI-based radiomics in predicting HPV status [21–23]. Moreover, 
numerous studies have shown MRI-based radiomic features can add 
information to clinical prognostic models of HPV-negative head and 
neck squamous cell carcinoma (HNSCC) or in heterogeneous cohorts 
[24–26]. However, the use of radiomics in prognostic models with HPV- 
positive tumors is less known. Most previous studies have additionally 
failed to include HPV PCR results in their research, ergo in this present 
study data including PCR status is available. 

The primary aim of this study is therefore to develop an MRI-based 
radiomics signature of primary OPSCC to predict HPV status. The sec
ondary aim is to develop an MRI-based radiomic prognostic model in 
OPSCC including HPV status and radiomics. 

Materials and methods 

Study population 

Fig. 1 illustrates the study process. Three cohorts of OPSCC patients, 
treated in Amsterdam UMC, were acquired: 1) retrospective cohort of 
OPSCC patients treated from 2008 to 2012 [25], including HPV-positive 
OPSCC, initially excluded from the earlier study; 2) retrospective dataset 
of HNSCC patients treated from 2012 to 2016 [27]; 3) prospective 
dataset of OPSCC patients treated from 2014 to 2018 [28]. For all 
datasets IRB approval was obtained and the inclusion criteria were 
histologically proven OPSCC, available pre-treatment T1-weighted 
(T1W) MR imaging and treatment with curative intent. The exclusion 
criteria were inadequate MRI quality due to artifacts, previous locore
gional treatment for head- and neck carcinoma and age under 18. For all 
patients, a validated algorithm for HPV detection was used: p16-IHC 
followed by a GP 5+/6+ PCR on the p16-IHC positive cases (sensi
tivity: 96%, specificity: 98%). [29]. Final TNM classification of the 
primary OPSCC was decided during the multidisciplinary team meetings 
at our institution, following the 7th edition of TNM classification [42]. 

MRI and segmentation 

The datasets contained whole-lesion segmented - primary tumor only 
– OPSCCs, delineated on T1W MR imaging according to the previously 
published method [25]. All segmentations were completed manually by 
using the software program VelocityAI 3.1 (Varian Medical Systems, Inc. 

Palo Alto, USA). The newly included HPV-positive tumors, initially 
excluded from the retrospective dataset with data from 2008 to 2012 
[25], were additionally delineated for this study by one observer SWM 
(five years of experience), supervised by PdG (fifteen years of experi
ence). Fig. 2 shows a manual delineation example. Delineation was done 
on axial T1W imaging, with axial short tau inversion recovery (STIR), 
axial post-contrast T1W scans and diffusion weighted imaging (DWI) 
used for reference, when available. For all patients, endoscopy reports 
were available and used to facilitate manual delineation. 

Radiomic feature extraction 

The DICOM and RTstruct files exported from Velocity were con
verted into Nifti files using spyder 3.6.3 [30]. 

Previous to feature extraction, the MR images were resampled to 
2x2x2 mm isotropic voxels and discretized using a fixed bin of 64 
[31,32]. Feature extraction and subsequent feature calculations were 
performed using in-house build RaCat software [30], following the 
Image Biomarker Standardization Initiative (IBSI) [31,32] guidelines. 

Statistical analysis 

The difference of parameters between HPV subgroups was analyzed 
performing the independent samples T-test (i.e., age, voxel size); Chi- 
square test (i.e., gender) and Fischer’s exact test (i.e., smoking, T- 
stage, N-stage, vendors, magnetic field strength, slice thickness). The 
difference of parameters between the three cohorts was analyzed using 
ANOVA testing (i.e., age, voxel size); Fischer’s exact test (i.e., gender) 
and the Chi-square test (i.e., smoking, T-stage, N-stage, vendors, mag
netic field strength and slice thickness). P values of <0.05 were 
considered statistically significant. 

Classification based on feature selection 
Hereafter, a machine learning framework in Python 3.6 was used to 

find the best fitting model [33]. Feature selection was applied to 
potentially improve generalizability and interpretability. We present 
results of eight feature selection methods (Table 2), as well as results of 
two classifiers: logistic regression (LR) and random forest (RF) classifier, 
the former being an standard benchmark, the latter a more flexible non- 
parametric algorithm able to outperform the former occasionally [34]. 
In absence of a separate, independent validation set, an approach with 
double cross validation is preferred over using a single random sample of 
the dataset for validation [35]. Therefore, this method was chosen to 
select the best-performing model in this study. For all 16 combinations, 
our model building framework is a standard, double cross-validation 
(CV) approach: the inner CV-loop is used to optimize the model in 
terms of selected features and hyper-parameter optimization, the outer 
CV-loop is used to test model performance. For both loops AUC (as 
evaluated on the left-out samples in the CV) is used as the evaluation 
criterion. We used a 5-fold CV for the inner CV-loop, and balanced, 
repeated 10-fold CV for the outer loop, using 5 repeats. Repeats were 
used to limit chance findings. 

No oversampling was applied since the ratio of HPV-negative and 
HPV-positive patients was balanced. Features were scaled using z-score 
normalization, since the features follow a normal distribution, and 
standardization maintains useful information concerning possible out
liers and makes the data less sensitive to them [36]. To evaluate model 
performance, a receiver operator characteristics curve was generated, 
and the AUC was calculated. The Brier score was used to assess model 
calibration and refinement (0.0 being optimal) [37]. Finally, twenty 
features with highest Shapley additive explanations [38] (SHAP) values 
were calculated. SHAP assigns each feature an importance value for a 
particular prediction, helping to interpret the outcome [38]. 
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Factor analysis 

Firstly, redundancy filtering was performed on the extracted features 
by removing the minimal number of features above a correlation 
threshold, which was set at 0.95. Subsequently, features were scaled 
(centered around 0 and variance 1) to prevent the possibility of features 
with the largest scale dominating the analysis. A regularized estimator of 
the correlation matrix between the scaled features was obtained, and a 
maximum likelihood factor analysis was performed on the matrix. 
Number of latent features was determined using the Kaiser-Guttman rule 
[39] on the regularized correlation matrix. Factor scores were obtained 
by regressing latent features on the observed data by way of the obtained 
factor solution. These steps were performed by using the R package 
“FMradio: Factor modeling for radiomic data”, version 1 [40]. The 
proportion of variance explained by all factors must be appreciable, thus 
the threshold was set on 80%. 

HPV status prediction 

To assess the value of radiomics versus clinical variables in predict
ing HPV status, the factors were used in LR models. First, the constructed 
factors were used as predictors for a model with only radiomic factors as 
predictors and a model combining radiomic factors and clinical data. 
Additionally, a model was built with clinical data only. For the clinical 
model and the model combining clinical data and radiomic factors, only 
uniformly available clinical variables were used, for which some pre
dictive power was expected. These variables were age at diagnosis, T- 
stage, N-stage, gender, and smoking status. To assess performance of the 
models, LR analyses were used to determine AUC’s. 

Survival analysis 

Hereafter, the constructed factors were used to build a prognostic 

model for overall survival. Firstly, the prognostic performance of clinical 
parameters and radiomic factors was assessed separately by performing 
a cox regression analysis. Thereafter, clinical parameters and radiomic 
factors were combined in a multivariable regression analysis as well as 
an RF analysis. Predictive performance of the models was assessed by 
using the concordance index (C-Index). A risk stratification for overall 
survival was done using Kaplan Meier survival curves, which was 
divided into high (≥66%), medium (≥33–66%), and low risk (<33%). 
Analyses concerning prognostic modelling were performed with R. 

Results 

Patient characteristics 

In total, 249 OPSCC patients were included, of which 91 HPV- 
positive- and 158 HPV-negative OPSCC. Table 1 shows results of p16 
IHC and HPV PCR testing. Notably, eleven patients had positive p16 
tests, but negative HPV PCR results, who were included in the HPV- 
negative group. Furthermore, patient- and scanner characteristics are 
reported per HPV status subgroup (Table 1) and per cohort (Supple
mental Table 1). Age did not significantly differ between HPV sub
groups, with a mean of 61 years (p = 0.793). In the HPV-negative group 
patients were more likely to be male (p = 0.007), and active smokers (p 
< 0.0001). For the HPV-positive group, tumors were almost exclusively 
located in tonsils and base of the tongue (48.4% and 50.5%, respec
tively). Most HPV-negative tumors were located in tonsils and base of 
the tongue as well (38.0% and 36.1%, respectively), yet 25.9% of tumors 
were located elsewhere in the oropharynx. For both tumor and nodal 
stage significant differences were found between HPV subgroups (both 
p < 0.0001). HPV-negative tumors presented with higher tumor stage: 
60.1% of tumors T3 and T4, versus 34.1% for HPV-positive tumors. 
HPV-negative patients more frequently presented with N0 stage than 
HPV-positive patients (31.6% and 5.5%, respectively). For scanner 

Fig. 2. Illustration of manual segmentation of a T2N0 right sided tonsillar tumor on T1W MRI (A) and STIR (B).  
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characteristics (i.e., vendors, magnetic field strength and voxel size) no 
significant differences were found (p = 0.581, p = 0.691, and p = 0.172, 
respectively). 

HPV status prediction model building based on feature selection 
Per tumor segmentation 498 features were extracted, describing in

tensity, morphology, and texture (Supplemental Table 2) [32]. Of the 
eight feature selection methods considered, univariate feature qualifi
cation showed best performance (Table 2). Univariate feature qualifi
cation rendered 49 features (Supplemental Table 3), which were 
subsequently used for model building. LR showed an AUC of 0.79 
(standard deviation (SD) 0.10) and RF showed an equal AUC of 0.79 (SD 
0.09) (Fig. 3). The Brier score of both models was 0.18 (SD 0.04). The 
twenty features with highest SHAP values for both analyses are shown in 
Fig. 4. Fourteen of the twenty most influential features were similar in 
both models, mainly concerning sphericity (e.g., spherical 

disproportion), intensity variation (e.g., coefficient of variation), 
compactness (e.g., compactness1) and diameter (e.g., minor- and major 
axis length) of the tumor. The SHAP plots show the values of features 
concerning compactness, volume density, flatness and sphericity to be 
greater for HPV-positive tumors. The values of features concerning in
tensity variation, non-uniformity, and diameter are greater for HPV- 
negative tumors. 

HPV status prediction model building based on factor analysis 

For the factor analysis, redundancy filtering was applied on the 498 
features to remove highly correlated features, which resulted in 100 
features. With these features, ten factors were created, accounting for 
82% of variation in the data. The exact content of each factor is pre
sented in Supplemental Table 4. The ten factors were used to train a 
model with LR to predict OPSCC HPV status. Additionally, a model with 
only clinical variables was built. Both the models with radiomic factors 
only and clinical variables only performed with an AUC of 0.80. The 
combined model with clinical and radiomic data shows an AUC of 0.87. 
Significant covariates in the combined model were T-stage, N-stage, 
smoking status, gender, factors 1, 3, 5 and 6. 

Overall survival 

Finally, the ten radiomics factors were used to develop a model to 
predict overall survival of OPSCC patients. Since the number of events 
was small in the HPV-positive group, the decision was made to not split 
the group when fitting the survival models. HPV status was therefore 
employed as covariate in the model. For the multivariate Cox regression 
model, significant predictors for overall survival in the factors only 
model were factors 1, 3 and 6 and performed with a C-Index of 0.674 
(SE = 0.03). When only clinical parameters were assessed, significant 
predictors were gender, smoking status, age, and HPV status, which 
performed with a C-Index of 0.679 (SE = 0.027). Significant predictors 
for overall survival were gender, HPV status and factors 1, 3, 6 and 7 
when combining clinical parameters with radiomic factors, and this 
model was most predictive (C-Index = 0.72, SE = 0.026). Additionally, a 
random survival forest was explored, however this model performed less 
than the Cox analysis, with a C-Index of 0.65. The risk stratification into 
high, medium, and low risk for was constructed for overall survival 
(time to death): clinical parameters only (p < 0.0001), factors only (p =
0.0001) and combined model (p < 0.0001) (Fig. 5). 

Table 1 
Patient- and scanner characteristics, per HPV subgroup.  

Patients Total p ¼
249 (%) 

HPV-positive 
p ¼ 91 (%) 

HPV-negative 
p ¼ 158 (%) 

P 
value a 

P16 IHC/PCR 
results     

P16 IHC- 147 (59)    
P16 IHC+/PCR- 11 (4)    
P16 IHC+/PCR+ 91 (37)    
Age [mean in 

years] (SD)  
61 (8.2) 61 (8.4) 61 (8.1) .793c 

Gender    .007d 

Female 78 (31.3) 19 (20.8) 59 (37.3)  
Male 171 (68.7) 72 (79.1) 99 (62.7)  
Smoking    .000e 

Never smoked 48 (19) 33 (36) 15 (10)  
Stopped smoking 68 (27) 32 (35) 36 (23)  
Active smoker 116 (48) 26 (29) 107 (68)  
Tumor stageb    .000e 

T1 32 (13) 20 (22) 12 (8)  
T2 91 (37) 40 (44) 51 (32)  
T3 47 (19) 14 (15) 33 (21)  
T4 79 (32) 17 (19) 62 (39)  
Nodal stage b    .000e 

N0 55 (22) 5 (6) 50 (32)  
N1 45 (18) 14 (15) 31 (20)  
N2 129 (52) 61 (67) 68 (43)  
N3 18 (7) 10 (11) 8 (5)  
Tumor site    .000e 

Tonsil 104 (42) 44 (48) 60 (38)  
Base of tongue 103 (41) 46 (51) 57 (36)  
Soft palate/Uvula 22 (9) 0 (0) 22 (14)  
Oropharynx NOS 20 (8) 1 (1) 19 (12)  
Vendors    .581e 

GE 163 (66) 56 (62) 107 (68)  
Philips 55 (22) 21 (23) 34 (22)  
Siemens 31 (12) 14 (15) 17 (11)  
Magnetic field 

strength    
.619e 

1.0T 1 (0.4) 0 (0) 1 (1)  
1.5T 169 (68) 59 (65) 110 (70)  
3.0T 79 (32) 32 (35) 47 (30)  
Slice thickness    .001e 

3 mm 53 (21) 15 (17) 38 (25)  
4 mm 171 (69) 58 (64) 113 (72)  
5 mm 25 (10) 18 (20) 7 (4)  
Voxel size X*Y*Z 

[mean] (SD) 
1,051 
(0.4) 

1,126 (0.5) 1,007 (0.4) .172c  

a P value of differences between HPV-positive and HPV-negative group. 
b TNM classification, 7th edition [43]. 
c Independent samples T-test. 
d Chi square test. 
e Fisher’s exact test. 

Abbreviations: IHC = Immunohistochemistry; PCR = Polymerase Chain 
Reaction; NOS = Not otherwise specified. 

Table 2 
Performance of the eight considered feature selection methods and two 
classifiers.  

Feature selection 
method 

AUC Logistic Regression 
(standard deviation) 

AUC Random Forrest 
(standard deviation) 

Firefly Algorithm (FA) 0.62 (0.12) 0.65 (0.11) 
Lasso 0.79 (0.10) 0.77 (0.10) 
Principal Component 

Analysis (PCA) 
0.78 (0.09) 0.74 (0.08) 

RFE-Logistic Regression 
(RFE-LR) 

0.78 (0.10) 0.79 (0.09) 

RFE-Random Forrest 
(RFE-RF) 

0.77 (0.10) 0.80 (0.09) 

RFE-Support Vector 
Machine (RFE-SVM) 

0.69 (0.10) 0.72 (0.10) 

Univariate 0.79 (0.09) 0.79 (0.10) 
None 0.77 (0.11) 0.77 (0.10) 

Area Under the Curve scores for all eight considered feature selection methods, 
and for the two considered classifiers, namely logistic regression and random 
forest. Abbreviations: AUC = Area under the curve; RFE = Recursive Feature 
Elimination. 
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Discussion 

In the present study quantitative imaging features were extracted 
from T1W MR images of OPSCC patients and were firstly used to develop 
radiomics models to predict HPV infection status, with sufficient per
formance. Both the LR model and RF model based on univariate feature 
selection had similar performance (AUC = 0.79). Moreover, fourteen out 
of twenty most impactful features in both these models were similar, 
mostly concerning compactness, axis length, sphericity, and intensity 
variation. Additionally, a model was developed based on ten factors, 
with good predictive performance (AUC = 0.80), a model based on 
clinical data performed equally well (AUC = 0.80), and combining the 
factor model and clinical model showed even better performance (AUC 
= 0.89). Ideally, radiomics could be employed as a non-invasive test, 
however the increase of performance when combining the models was 
small and insufficiently accurate to replace p16/HPV PCR testing at this 
stage. Potentially, inclusion of additional MRI sequences could improve 
model performance. 

The prognostic value of the developed radiomic factors was addi
tionally assessed. Since the small number of events in the HPV-positive 
group, analyzing the prognostic value of the factors for HPV-positive 
patients separately was not worthwhile. However, the multivariable 
analysis did show HPV status analysis to be of importance as covariate in 
the analysis. For future research, a greater cohort of HPV-positive pa
tients is necessary to determine if MRI-based radiomics can be of prog
nostic meaning in overall survival analysis of HPV-positive tumors. 

The extracted MRI features reflect some biological differences be
tween HPV-positive and HPV-negative OPSCC, demonstrating the 
feasibility of radiomics in HPV classification. The features compact
ness1, compactness2 and sphericity quantify the deviation of the region 
of interest (ROI) volume from a representative spheroid. This is 
congruent with HPV-positive OPSCC known to be sphere-like, meaning 
these carcinomas tend to have an abrupt transition between the tumor 
and the adjacent surface epithelium [3,41]. Furthermore, the features 
major- and minor axis length represent how far the volume extends 
along the largest and second largest axis. These axis features show to be 
greater for HPV-negative tumors, which is expected since HPV-negative 
OPSCC tend to present with higher T stages than HPV-positive OPSCC 
[42]. In the factor model, factor 5 was most influential and was partly 

based on the features volume density and axis length, which were also 
influential in both feature selection-based models. 

Additionally, several less expected features a priori were of impor
tance in the feature-based models. Firstly, the features ‘coefficient of 
variation’ and ‘quartile coefficient’ both are measures of dispersion of 
intensity distribution of the ROI. This dispersion is calculated by 
dividing the standard deviation by the mean of the intensity distribu
tion. It seems HPV-negative OPSCC have greater dispersion of intensity 
distribution, which might translate to higher intensity heterogeneity. 
Secondly, in the LR model, the RF model and the factor-based model 
‘GLDZM zone distance non uniformity’ features are of influence. The 
GLDZM counts the zones of linked voxels which share a specific grey 
level and possess the same distance to the ROI edge, capturing the 
relation between location and grey level. These features might likewise 
translate to greater heterogeneity in HPV-negative tumors. However, a 
relevant limitation becomes known since these extracted features are of 
mathematical nature. Consequently, clinical interpretability is limited 
and is subject to further research, e.g., to extensively explore correlation 
of extracted features and biological properties of OPSCC, for instance by 
correlation to genetics or histopathology. As follows, radiomic models 
might be of value in precision medicine since MRI-based radiomics 
seems to bring unseen variation of biological properties of carcinomas to 
light. 

It must be acknowledged that some studies on MRI-based radiomics 
in OPSCC have been done previously. Sohn et al. show six radiomic 
features to have strong association with OPSCC HPV status, including 
the feature flatness, similar to this study, and their models showed 
similar performance with an AUC of 0.75. However, a limitation was 
their small and imbalanced sample size, with 10 HPV-negative and 42 
HPV-positive cases [22]. Suh et al. extracted features from multi
parametric MRI sequences in OPSCC and were successful in developing a 
radiomic signature of HPV status, with an AUC of 0.77 and 0.76 for their 
LR and RF model, respectively [21]. Nonetheless, their sample size was 
relatively small as well (n = 60). Additionally, Bos et al. proved their 
model based on contrast enhanced T1W MRI radiomic features can 
predict HPV status in OPSCC, with an AUC of 0.76 for their test set, with 
a more extensive database (n = 153) [23]. In their model the feature 
sphericity had significant impact, similar to this study. Besides the issue 
of relatively small datasets, previous studies fail to include HPV PCR 

Fig. 3. ROC curves of HPV prediction by using radiomic features. After univariate feature qualification 49 features remained, which were used for model 
building through logistic regression and random forest analysis, the Fig. shows their performance. Logistic regression performed with an area under the curve of 0.79 
± 0.09 (A) and random forest performed with an area under the curve of 0.79 ± 0.10 (B). 
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Fig. 4. Twenty features with highest SHAP value of logistic regression (A) and random forest (B). Each dot on the plot is a Shapley value for one ROI, per 
feature. The horizontal location (the Shapley value) expresses the effect that the observed level of a feature for a tumor has on the final predicted probability. 
Negative SHAP value (to the left) means negative impact, leading the model to predict 0 (i.e. HPV-negative). Positive SHAP value means positive impact on pre
diction, leading the model to predict 1 (i.e. HPV-positive). The color of the dots shows whether the value of the feature is high (in pink) or low (in blue) for that 
observation. The features are ranked in descending order showing the feature importance. Abbreviations: AABB: axis aligned bounding box; GLDZM: grey level 
distance zone matrix; AEE: approximate enclosing ellipsoid. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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results in their research. While in this study, not p16 IHC but the com
bination of p16 IHC and HPV PCR was leading in determining HPV 
status in OPSCC. Therefore, eleven patients with positive p16 results, 
but negative PCR results were now classified as OPSCC HPV-negative. 
An implication for further research is to investigate whether this spe
cific group differs in terms of MRI-based radiomics. 

Performance of previously conducted studies is similar to perfor
mance of the models in this study and some similar features are used. 
However, comparing different models must be done with caution since 
feature selection methods, imaging sequence used for feature extraction, 
choice of machine learning classifiers, and study population differs 
across studies. This highlights a critical issue in this field, namely the 
generalizability of the models. MRI-based radiomic studies in HNSCC is 
known to lack study design standardization, which can limit clinical 
relevance [19]. The IBSI aimed to address this issue by standardization 
of radiomics software and defining reporting guidelines, considered in 
the present study. Furthermore, although the models developed in this 
study are built on a relative extensive dataset (n = 249), with imaging 
obtained from 2008 to 2018 from different vendors, no validation in an 
external dataset was performed. A recommendation for further research 
is validating the models in an external dataset or developing a model on 
a multicenter dataset. Another possible limitation is variability in data 
due to inconsistencies in tumor delineation, but this has been assessed 
before. Mes et al. assessed a random subgroup of 30 OPSCCs when 
segmentation was done by two independent radiologists, and no sig
nificant differences in radiomic features were found [25]. Moreover, 
Martens et al. likewise found no significant different values and high 
interobserver correlation when two independent observers delineated 
OPSCCs [28]. Furthermore, many features in the models reflect the same 
properties of the ROIs, e.g., sphericity, asphericity, compactness1 and 
compactness2 all reflect how the ROI is sphere-like. Hence, for future 
analysis it might be interesting to perform multivariate feature selection 
analyses, to explore influence of separate features more extensively, or 
in multiple combinations. Finally, for further research it is advised to 
include data on pack years in prognostic models of OPSCC. Although we 

acknowledge the important impact of pack years on outcome in OPSCC, 
unfortunately, this data was only available for approximately half of the 
included patients in the current study. 

Concluding, since the incidence of HPV-positive OPSCC is rising and 
clinical differences between HPV-positive and HPV-negative OPSCC are 
apparent, the importance of accurate discrimination between the two is 
evident. The radiomics models developed in the present study show 
sufficient performance for classification of HPV status in OPSCC, 
demonstrating the ability of radiomics in differentiating HPV status. 
Additionally, the specific extracted features of influence in the radiomics 
models provide use with more insight in radiological OPSCC properties. 
One might envision MRI-based radiomics to become a non-invasive, 
efficient, and possibly cost-reducing tool in phenotyping OPSCC, and 
tumors of other origin. Finally, the regression model concerning overall 
survival combining common clinical parameters and radiomics was 
more predictive than the models with clinical parameters or radiomics 
alone, hence implying additional value of incorporating radiomics in 
OPSCC prognosis. 
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Fig. 5. Kaplan Meier overall survival curves for clinical parameters combined with radiomic factors (p < 0.0001) (A), for radiomic factors only (p ¼
0.0001) (B) and for clinical parameters only (p < 0.0001) (C). The significant predictors in the combined model were gender, HPV status and factors 1, 3, 6 and 7. 
The significant predictors in de radiomic factors only model were factors 1, 3 and 6. The significant predictors in the clinical model only were gender, smoking status, 
age, and HPV status. 
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